Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Apunts, Med. esport (Internet) ; 58(220)October - December 2023. tab
Artigo em Inglês | IBECS | ID: ibc-226538

RESUMO

The aim of this study was to determine associations between workload, myosin isoforms, and performance in professional basketball, by following the progress of a professional basketball team over four consecutive seasons. Thirty male professional basketball players (age, 27.6 ± 4.1 years;height, 200.1 ± 9.4 cm;weight, 98.5 ± 12.6 kg) from an elite professional basketball team participated in this retrospective observational study. To analyze muscle response and which types of fiber were most involved, fast and myosin in serum were evaluated from three blood samples taken during the season, using enzyme-linked immunosorbent assay (ELISA). Parameters recorded were: exposure time,. Slow and fast myosins for muscle responses. Competitions won, ranking, and mean points scored for performance. Average values per season analysed were 280.1 ± 58 h of exposure to practice,1440.58±533.46µlmol/L of fast and 1178.75±427.75 µmol/L of slow myosin. Performance, assessed as team ranking was 6879.5 ± 985.37 u.a. per season and 90.72±2.79 u.a. per game, winning 7 competitions. Large negative relationships could be observed between slow myosins and exposure time (rho=−0.63;p=.02); There were possible associations between slow myosins and player mean performance per game (R2=0.98;p<.01) and team performance outcomes achieved (R2=0.83;p = 01) during these four seasons. Higher slow serum myosin values could be related to higher exposure time, and lower slow serum myosin values could be associated with better player and team performance. (AU)


Assuntos
Humanos , Masculino , Adulto Jovem , Adulto , Equipamentos Esportivos , Basquetebol/fisiologia , Miosinas/metabolismo , Miosinas/fisiologia , 51654 , Estudos Retrospectivos , Espanha
2.
PLoS One ; 18(3): e0282788, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36893105

RESUMO

Despite the traditional use of average values for determining physical demands, the intermittent and fluctuating nature of team sports may lead to underestimation of the most demanding scenarios. All the most demanding scenario-related investigations to date only report one maximal scenario per game, the greatest. However, the latest research on this subject has shown additional scenarios of equal or similar magnitude that most researchers have not considered. This repetition concept started a new way of describing competition and training loads; then the study aims were: first, to quantify and assess differences between playing positions in terms of the most demanding scenarios in official matches; and second, to quantify and assess the differences between playing positions in the repetition of different intensity scenarios relative to the most demanding individual scenario. We monitored nine professional rink hockey players (7 exterior and 2 interior players) in 18 competitive matches using an electronic performance tracking system. The interior players are closest to the opponent's goal, while the exterior players are farthest from it. Peak physical demands variables included total distance (m), distance covered at >18 km·h-1 (m), the number of accelerations (≥2 m∙s-2, count) and decelerations (≤-2 m∙s-2, count) in 30 s. An average from the top three individual most demanding scenarios was used to define a reference value to quantify the distribution scenario repetition during matches. The results showed that peak demands in rink hockey are position-dependent, with more distance covered by exterior players and more accelerations performed by interior players. In addition, rink hockey matches include multiple scenario exposures that are close to the peak physical demands of a match. Using the results of this study, coaches can prepare tailored training plans for each position, focusing on distances covered or accelerations for exterior players.


Assuntos
Desempenho Atlético , Hóquei , Corrida , Frequência Cardíaca , Eletrônica , Sistemas de Informação Geográfica
3.
Biol Res Nurs ; 25(3): 367-381, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36426821

RESUMO

BACKGROUND: Irisin has been suggested as a helpful hormone for adverse metabolic conditions. However, the interaction between acute endurance exercises and irisin is still unclear. The purpose of this systematic review and meta-analysis was to determine the acute effect of endurance training, either continuous or interval training, on circulating irisin in healthy adults. METHODS: Literature search was conducted in Web of Science, PubMed, Scopus and CINAHL until September 2022. Clinical trials measuring irisin levels following a single session of interval or continuous endurance training in healthy adults were eligible. Cohen's d effect size (95% confidence level), subgroup analyses and univariate meta-regression were calculated using a random-effects model. The procedures described by PRISMA were followed and the protocol was prospectively registered with PROSPERO (CRD 42021240971). RESULTS: Data of the 16 included studies comprising 412 individuals showed a significant increase following one session of continuous endurance training (d = 0.33, 95% CI: 0.20 to 0.46, p < 0.001), while interval training did not change circulating irisin (d = 0.16, 95% CI: -0.12 to 0.44, p = 0.202). Both subgroup and univariate meta-regression analyses showed non-significant differences in the change of circulating irisin comparing blood measurement, exercise mode or previous level of physical activity of the participants and circulating irisin at baseline, duration, or intensity of the exercise, respectively. CONCLUSION: Continuous method for endurance training increases circulating irisin in healthy adults, while studies measuring circulating irisin following interval training in healthy adults are still limited to be conclusive.


Assuntos
Treino Aeróbico , Adulto , Humanos , Fibronectinas , Exercício Físico , Projetos de Pesquisa , Estado Nutricional
4.
Front Physiol ; 14: 1331878, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264326

RESUMO

Background: Hamstring muscles are most affected by multiple sprint-based sports as a result of muscle strain during sprinting, leading to reduced performance and increased risk of injury. Therefore, the purpose of the study was to assess inter-individual variability in hamstrings recovery after a sport-specific repeated-sprint training (RST), through sprint-specific markers of muscle recovery and associated muscle damage biomarkers in women and men. Methods: Healthy females (n = 14) and males (n = 15) underwent 10 repeated 40-m sprints with a 3-min rest pause between each repetition. Force-generating capacity (FGC) by the 90° hip :20° knee test and range of motion Jurdan test, together with serum biomarkers [sarcomeric mitochondrial creatine kinase (sMtCK), oxidative stress, irisin] were tested at baseline and 24-, 48- and 72-h post-exercise through a repeated measures design. Participants were classified according to FGC loss into high responders (HR) and low responders (LR). Results: 21 individuals (10 females, 11 males) were classified as HR (FGC loss >20% and recovery >48 h), while 8 individuals (4 females, 4 males) were classified as LR. HR individuals showed unrecovered maximal voluntary isometric contraction (MVIC) torque until 72 h post-training (p = 0.003, np 2 = 0.170), whereas only HR males showed decreased range of motion (p = 0.026, np 2 = 0.116). HR individuals also showed increased sMtCK (p = 0.016, np 2 = 0.128), oxidative stress (p = 0.038, np 2 = 0.106) and irisin (p = 0.019, np 2 = 0.123). Conclusion: There is inter-individual variability in the muscular response to a sport-specific RST, identifiable by MVIC torque assessment. The findings support that the 90° hip :20° knee test is a powerful indirect test to screen hamstrings recovery in both women and men, in a cost-effective way. However, the Jurdan test might not be able to monitor hamstrings recovery in sportswomen after RST. Decreases in muscle capacity are linked to damage to muscle sarcolemma and mitochondria until 72 h post-exercise. Overall, 72 h will not be adequate time to restore hamstrings structure and function after a sport-specific RST in both female and male responders.

5.
Front Physiol ; 12: 698463, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267678

RESUMO

The aims of this study were 3-fold: firstly, to present an integrative approach to external and internal load dynamics for monitoring fitness and fatigue status of specific in-court rink hockey training sessions in a standard microcycle; secondly, to assess the differences between training sessions and matches; the third and final aim was to assess the association between external and internal load metrics. The external load, using a local positioning system, and internal load, using the declared rate of perceived exertion, were measured during 23 in-season microcycles for nine top-level players. Training load data were analysed with regard to the number of days before or after a match [match day (MD) minus or plus]. In relation to the first aim, internal and external load metrics merged into a single integrated system using pooled data z-scores provided an invisible monitoring tool that places the players in the fitness-fatigue continuum throughout the different microcycle sessions. In this regard, MD-4 and MD-1 sessions tend to place, with a low dispersion, the players in a "low external and internal load" zone. On the contrary, in MD-3 and MD-2 sessions, as well as in MD, in which higher loads were recorded, most of the players were within a "high external and internal load" zone with a tendency towards dispersion towards the fitness or fatigue zones. Finally, and with regard to the second and third aims, an inverted "U-shape" load dynamic related to the specific goals of each training session was the main finding in terms of comparison between MD; a load peak between MD-3 and MD-2 sessions and a significant decrease in all the load variables in MD-1 sessions were found; and high-to-low correlations were found between external and internal load metrics. This study presents an integrative approach to the external and internal load of players for monitoring fitness and fatigue status during a standard microcycle in rink hockey that might provide team sport staff members with a deeper understanding of load distribution in the microcycle in relation to the match.

6.
J Sports Med Phys Fitness ; 59(11): 1828-1834, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31808329

RESUMO

BACKGROUND: To measure the impact of training models on injury incidence, data of health and performance were integrated to study fiber adaptation during a competitive season. We studied football players over a season, analyzing hours of exposure to sport by serum changes in fast and slow myosin, creatine kinase and lactate dehydrogenase. METHODS: A new assay was developed to measure the myosin isoforms in 49 non-sporting volunteers and in 27 professional football players. RESULTS: Myosin isoforms in volunteers with mean ages of 30±8 were 1553 µg/L fast and 1284 µg/L slow; in the group with of 56±7 were 1426 µg/L fast and 1046 µg/L slow. Slow myosin was significantly lower in older subjects (-18%). Samples from the players in preseason had lower mean scores for fast myosin (1123 µg/L) and higher for slow myosin (2072 µg/L) than reference volunteers. During the season, myosins reached the maximum with the maximum load (1537 µg/L fast, 2195 µg/L slow but decreased and adapted to the high level of demand (425 µg/L fast, 1342 µg/L slow). CK and LDH were maximal at the pre-season (227 U/L, 333 U/L) while myosin levels were maximal at the beginning of season (1537 µg/L, 2195 µg/L). CONCLUSIONS: Measuring serum myosin isoforms we identify the type and amount of damage caused by training and matches, making it a new control tool capable of advising training towards a minimum of blood slow myosin but controlling the fast fiber participating and be able to improve the performance of the players.


Assuntos
Futebol Americano/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Miosinas/sangue , Aclimatação , Adaptação Fisiológica , Adulto , Idoso , Animais , Creatina Quinase/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Isoformas de Proteínas/sangue , Adulto Jovem
7.
Int J Sports Med ; 40(4): 253-262, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30836391

RESUMO

Consequences of running mountain races on muscle damage were investigated by analysing serum muscle enzymes and fibre-type-specific sarcomere proteins. We studied 10 trained amateur and 6 highly trained runners who ran a 35 km and 55 km mountain trail race (MTR), respectively. Levels of creatine kinase (CK), CK-MB isoform (CK-MB), sarcomeric mitochondrial CK (sMtCK), transaminases (AST and ALT), cardiac troponin I (cTnI) and fast (FM) and slow myosin (SM) isoforms, were assessed before, 1 h, 24 h and 48 h after the beginning of MTR. Significant SM increases were found at 24 h in the 55 km group. Levels of CK, CK-MB, AST and cTnI were significantly elevated in both groups following MTR, but in the 55 km group they tended to stabilize in at 48 h. Using pooled data, time-independent serum peaks of SM and CK-MB were significantly correlated. Moreover, concentration of sMtCK was significantly elevated at 1 and 24 h after the race in the 35 km group. Although training volume could confer protection on the mitochondria, the increase in serum CK-MB and SM in the 55 km group might be related to damage to the contractile apparatus type I fibres. Competing in long-distance MTRs might be related to deeper type I muscle fibre damage, even in highly trained individuals.


Assuntos
Mitocôndrias Musculares/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Resistência Física/fisiologia , Corrida/lesões , Adulto , Alanina Transaminase/metabolismo , Aspartato Aminotransferases/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Comportamento Competitivo/fisiologia , Creatina Quinase/sangue , Creatina Quinase Forma MB/sangue , Creatina Quinase Mitocondrial , Humanos , Masculino , Mitocôndrias Musculares/enzimologia , Fibras Musculares de Contração Rápida/enzimologia , Fibras Musculares de Contração Lenta/enzimologia , Miosinas/metabolismo , Condicionamento Físico Humano , Isoformas de Proteínas/metabolismo , Sarcômeros/enzimologia , Troponina I/metabolismo
8.
J Strength Cond Res ; 33(3): 857-865, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30640300

RESUMO

García-Fresneda, A, Carmona, G, Padullés, X, Nuell, S, Padullés, JM, Cadefau, JA, and Iturricastillo, A. Initial maximum push-rim propulsion and sprint performance in elite wheelchair rugby players. J Strength Cond Res 33(3): 857-865, 2019-Wheelchair rugby (WR) is an increasingly popular Paralympic sport; however, the evidence base supporting the validity and reliability of field tests to assess the physical condition of WR players is in its infancy. Therefore, here, we aimed to evaluate the intrasession reliability of the initial maximum push-rim propulsion (IMPRP) test and the sprint test, and to determine the relationships between IMPRP mechanical outputs and sprint performance variables. We studied 16 Spanish WR players (aged 33 ± 9 years). The maximum single wheelchair push from a stationary position and the sprint performance (i.e., times for 3, 5, and 12 m, and the maximum velocity) of elite WR players were measured in this study. The intraclass correlation coefficient, coefficient of variation, and standard error of measurement for IMPRP variables were >0.85, <10.6%, and <16.76, respectively; the corresponding values for a linear sprint were >0.97, <3.50%, and <0.15. In relation to IMPRP mechanical outputs (i.e., acceleration, maximum acceleration, force, maximum force, power, and maximum power) and sprint performance (i.e., times for 3, 5, and 12 m, and the maximum velocity), significant and large associations were observed in the WR players (r ± confidence limit = -0.78 ± 0.17 to -0.90 ± 0.11; 0/0/100, most likely; R = 0.613-0.812; p < 0.001). These tests provide simple and reliable methods for obtaining accurate mechanical pushing capacities and sprint performances of WR competitors (the 61.4-80.1% variance in sprint performance was explained by the IMPRP variables). These relationships indicate a need to implement specific strength exercises in WR players with the aim of improving the IMPRP and therefore improving sprint capacity.


Assuntos
Desempenho Atlético/fisiologia , Teste de Esforço/normas , Futebol Americano/fisiologia , Cadeiras de Rodas , Aceleração , Adulto , Humanos , Masculino , Força Muscular/fisiologia , Reprodutibilidade dos Testes , Adulto Jovem
9.
Front Physiol ; 9: 1265, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30246805

RESUMO

Purpose: To assess early changes in muscle function and hypertrophy, measured as increases in muscle cross-sectional areas (CSAs) and total volume, over a 4 weeks inertial resistance training (RT) program. Methods: Ten young RT-naive volunteers (age 23.4 ± 4.1 years) underwent 10 training sessions (2-3 per week) consisting of five sets of 10 flywheel squats (moment of inertia 900 kg⋅cm2). Magnetic resonance imaging (MRI) scans of both thighs were performed before (PRE), and after 2 (IN) and 4 (POST) weeks of training to compute individual muscle volumes and regional CSAs. Scans were performed after ≥96 h of recovery after training sessions, to avoid any influence of acute muscle swelling. PRE and POST regional muscle activation was assessed using muscle functional MRI (mfMRI) scans. Concentric (CON) and eccentric (ECC) squat force and power, as well as maximal voluntary isometric contraction force (MVIC) of knee extensors and flexors, were measured in every training session. Results: Significant quadriceps hypertrophy was detected during (IN: 5.5% ± 1.9%) and after (POST: 8.6% ± 3.6%) the training program. Increases in squat force (CON: 32% ± 15%, ECC: 31 ± 15%) and power (CON: 51% ± 30%, ECC: 48% ± 27%) were observed over the training program. Knee extensor MVIC significantly increased 28% ± 17% after training, but no changes were seen in knee flexor MVIC. No correlation was found between regional muscular activation in the first session and the % of increase in regional CSAs (r = -0.043, P = 0.164). Conclusion: This study reports the earliest onset of whole-muscle hypertrophy documented to date. The process initiates early and continues in response to RT, contributing to initial increases in force. The results call into question the reliability of mfMRI as a tool for predicting the potential hypertrophic effects of a given strengthening exercise.

10.
Front Physiol ; 9: 54, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467666

RESUMO

Purpose: To investigate the extent and evolution of hamstring muscle damage caused by an intensive bout of eccentric leg curls (ELCs) by (1) assessing the time course and association of different indirect markers of muscle damage such as changes in the force-generating capacity (FGC), functional magnetic resonance (fMRI), and serum muscle enzyme levels and (2) analyzing differences in the degree of hamstring muscle damage between and within subjects (limb-to-limb comparison). Methods: Thirteen male participants performed six sets of 10 repetitions of an ELC with each leg. Before and at regular intervals over 7 days after the exercise, FGC was measured with maximal isometric voluntary contraction (MVC). Serum enzyme levels, fMRI transverse relaxation time (T2) and perceived muscle soreness were also assessed and compared against the FGC. Results: Two groups of subjects were identified according to the extent of hamstring muscle damage based on decreased FGC and increased serum enzyme levels: high responders (n = 10, severe muscle damage) and moderate responders (n = 3, moderate muscle damage). In the high responders, fMRI T2 analysis revealed that the semitendinosus (ST) muscle suffered severe damage in the three regions measured (proximal, middle, and distal). The biceps femoris short head (BFsh) muscle was also damaged and there were significant differences in the FGC within subjects in the high responders. Conclusion: FGC and serum enzyme levels measured in 10 of the subjects from the sample were consistent with severe muscle damage. However, the results showed a wide range of peak MVC reductions, reflecting different degrees of damage between subjects (high and moderate responders). fMRI analysis confirmed that the ST was the hamstring muscle most damaged by ELCs, with uniform T2 changes across all the measured sections of this muscle. During intensive ELCs, the ST muscle could suffer an anomalous recruitment pattern due to fatigue and damage, placing an excessive load on the BFsh and causing it to perform a synergistic compensation that leads to structural damage. Finally, T2 and MVC values did not correlate for the leg with the smaller FGC decrease in the hamstring muscles, suggesting that long-lasting increases in T2 signals after FGC markers have returned to baseline values might indicate an adaptive process rather than damage.

11.
J Appl Physiol (1985) ; 123(5): 1235-1245, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28819003

RESUMO

The aim of this study was to determine if reactive oxygen species (ROS) could play a role in blunting Thr172-AMP-activated protein kinase (AMPK)-α phosphorylation in human skeletal muscle after sprint exercise in hypoxia and to elucidate the potential signaling mechanisms responsible for this response. Nine volunteers performed a single 30-s sprint (Wingate test) in two occasions while breathing hypoxic gas ([Formula: see text] = 75 mmHg): one after the ingestion of placebo and another following the intake of antioxidants (α-lipoic acid, vitamin C, and vitamin E), with a randomized double-blind design. Vastus lateralis muscle biopsies were obtained before, immediately after, and 30- and 120-min postsprint. Compared with the control condition, the ingestion of antioxidants resulted in lower plasma carbonylated proteins, attenuated elevation of the AMP-to-ATP molar ratio, and reduced glycolytic rate (P < 0.05) without significant effects on performance or V̇o2 The ingestion of antioxidants did not alter the basal muscle signaling. Thr172-AMPKα and Thr184/187-transforming growth factor-ß-activated kinase 1 (TAK1) phosphorylation were not increased after the sprint regardless of the ingestion of antioxidants. Thr286-CaMKII phosphorylation was increased after the sprint, but this response was blunted by the antioxidants. Ser485-AMPKα1/Ser491-AMPKα2 phosphorylation increased immediately after the sprints coincident with increased Akt phosphorylation. In summary, antioxidants attenuate the glycolytic response to sprint exercise in severe acute hypoxia and modify the muscle signaling response to exercise. Ser485-AMPKα1/Ser491-AMPKα2 phosphorylation, a known mechanism of Thr172-AMPKα phosphorylation inhibition, is increased immediately after sprint exercise in hypoxia, probably by a mechanism independent of ROS.NEW & NOTEWORTHY The glycolytic rate is increased during sprint exercise in severe acute hypoxia. This study showed that the ingestion of antioxidants before sprint exercise in severe acute hypoxia reduced the glycolytic rate and attenuated the increases of the AMP-to-ATP and the reduction of the NAD+-to-NADH.H+ ratios. This resulted in a modified muscle signaling response with a blunted Thr286-CaMKII but similar AMP-activated protein kinase phosphorylation responses in the sprints preceded by the ingestion of antioxidants.


Assuntos
Antioxidantes/administração & dosagem , Desempenho Atlético/fisiologia , Exercício Físico/fisiologia , Hipóxia/metabolismo , Músculo Esquelético/metabolismo , Doença Aguda , Adulto , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Teste de Esforço/métodos , Humanos , Hipóxia/tratamento farmacológico , Masculino , Músculo Esquelético/efeitos dos fármacos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Corrida/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Adulto Jovem
12.
J Appl Physiol (1985) ; 122(1): 96-103, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27932674

RESUMO

As metabolic changes in human skeletal muscle after long-term (simulated) spaceflight are not well understood, this study examined the effects of long-term microgravity, with and without concurrent resistance exercise, on skeletal muscle oxidative and glycolytic capacity. Twenty-one men were subjected to 84 days head-down tilt bed rest with (BRE; n = 9) or without (BR; n = 12) concurrent flywheel resistance exercise. Activity and gene expression of glycogen synthase, glycogen phosphorylase (GPh), hexokinase, phosphofructokinase-1 (PFK-1), and citrate synthase (CS), as well as gene expression of succinate dehydrogenase (SDH), vascular endothelial growth factor (VEFG), peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1α), and myostatin, were analyzed in samples from m. vastus lateralis collected before and after bed rest. Activity and gene expression of enzymes controlling oxidative metabolism (CS, SDH) decreased in BR but were partially maintained in BRE. Activity of enzymes regulating anaerobic glycolysis (GPh, PFK-1) was unchanged in BR. Resistance exercise increased the activity of GPh. PGC-1α and VEGF expression decreased in both BR and BRE. Myostatin increased in BR but decreased in BRE after bed rest. The analyses of these unique samples indicate that long-term microgravity induces marked alterations in the oxidative, but not the glycolytic, energy system. The proposed flywheel resistance exercise was effective in counteracting some of the metabolic alterations triggered by 84-day bed rest. Given the disparity between gene expression vs. enzyme activity in several key metabolic markers, posttranscriptional mechanisms should be explored to fully evaluate metabolic adaptations to long-term microgravity with/without exercise countermeasures in human skeletal muscle.


Assuntos
Adaptação Fisiológica/fisiologia , Exercício Físico/fisiologia , Metaboloma/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Aclimatação/fisiologia , Adulto , Repouso em Cama/métodos , Expressão Gênica/fisiologia , Glicólise/fisiologia , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Humanos , Masculino , Voo Espacial/métodos , Ausência de Peso , Simulação de Ausência de Peso/métodos
13.
Int J Sports Physiol Perform ; 10(8): 1041-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25848839

RESUMO

OBJECTIVE: To investigate changes after a mountain ultramarathon (MUM) in the serum concentration of fast (FM) and slow (SM) myosin isoforms, which are fiber-type-specific sarcomere proteins. The changes were compared against creatine kinase (CK), a widely used fiber-sarcolemma-damage biomarker, and cardiac troponin I (cTnI), a widely used cardiac biomarker. METHODS: Observational comparison of response in a single group of 8 endurance-trained amateur athletes. Time-related changes in serum levels of CK, cTnI, SM, and FM from competitors were analyzed before, 1 h after the MUM, and 24 and 48 h after the start of the MUM by 1-way ANOVA for repeated measures or Friedman and Wilcoxon tests. Pearson correlation coefficient was employed to examine associations between variables. RESULTS: While SM was significantly (P = .009) increased in serum 24 h after the beginning of the MUM, FM and cTnI did not change significantly. Serum CK activity peak was observed 1 h after the MUM (P = .002). Moreover, serum peaks of CK and SM were highly correlated (r = .884, P = .004). CONCLUSIONS: Since there is evidence of muscle damage after prolonged mountain running, the increase in SM serum concentration after a MUM could be indirect evidence of slow- (type I) fiber-specific sarcomere disruptions.


Assuntos
Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/lesões , Miosina Tipo I/sangue , Resistência Física/fisiologia , Corrida/fisiologia , Sarcômeros/metabolismo , Miosinas de Músculo Esquelético/sangue , Adulto , Biomarcadores/sangue , Creatina Quinase/sangue , Feminino , Humanos , Masculino , Troponina I/sangue
14.
J Clin Endocrinol Metab ; 100(3): E407-15, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25532038

RESUMO

CONTEXT: Diabetes is frequently diagnosed late, when the development of complications is almost inevitable, decreasing the quality of life of patients. However, early detection of affected individuals would allow the implementation of timely and effective therapies. OBJECTIVE: Here we set to describe the profile of circulating microRNAs (miRNAs) in prediabetic patients with the intention of identifying novel diagnostic and therapeutic tools. DESIGN: We used real-time RT-PCR to measure the abundance of 176 miRNAs in serum of a cohort of 92 control and prediabetic individuals with either impaired fasting glucose or impaired glucose tolerance, as well as newly diagnosed diabetic patients. We validated the results in a second cohort of control and prediabetic subjects undergoing a therapeutic exercise intervention, as well as in a mouse model of glucose intolerance. RESULTS: We identified two miRNAs, miR-192 and miR-193b, whose abundance is significantly increased in the prediabetic state but not in diabetic patients. Strikingly, these miRNAs are also increased in plasma of glucose-intolerant mice. Moreover, circulating levels of miR-192 and miR-193b return to baseline in both prediabetic humans and glucose-intolerant mice undergoing a therapeutic intervention consisting in chronic exercise, which succeeded in normalizing metabolic parameters. CONCLUSIONS: Our data show that the pattern of circulating miRNAs is modified by defects in glucose metabolism in a similar manner in mice and humans. This circulating miRNA signature for prediabetes could be used as a new diagnostic tool, as well as to monitor response to intervention.


Assuntos
Biomarcadores/sangue , Terapia por Exercício , MicroRNAs/sangue , Estado Pré-Diabético/sangue , Estado Pré-Diabético/terapia , Animais , Exercício Físico/fisiologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Estado Pré-Diabético/genética , Transcriptoma
15.
Br J Nutr ; 95(5): 947-54, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16611385

RESUMO

The aim of the present study was to examine whether the level of dietary cis fatty acid (cFA), or the isomers (trans or cis) and/or the saturation of the fatty acids at high dietary fat levels altered the intracellular glucose metabolites and certain regulatory enzyme activities in the skeletal muscle and liver of rats. The animals were fed for 30 d on either a recommended control diet (7 % cFA, w/w) or a high-fat diet (20 % fatty acids, w/w). The high-fat diet was enriched with either cFA, trans fatty acid (tFA), a moderate proportion of saturated fatty acid (MSFA), or a high proportion of saturated fatty acid (HSFA). The most striking findings were observed in the gastrocnemius muscle with a HSFA diet. There was a significant increase in glucose-6-phosphate (306 %), glucose-1-phosphate (245 %), fructose-6-phosphate (400 %), fructose-1,6-bisphosphate (86 %), glyceraldehyde-3-phosphate (38 %), pyruvate (341 %), lactate (325 %), citrate (79 %) and the bisphosphorylated sugars as compared with the cFA diet. These changes were paralleled by an increase in muscle triacylglycerol content (49 %) and a decrease in glucose (39 %). In addition, the amount of cFA and the other types of fatty acid (i.e. tFA and MSFA) led to no great differences in glucose metabolism as compared with the respective control group. These data support the hypothesis that glucose changes induced by a HSFA diet are a multifaceted abnormality. Glucose and lactate transport and intracellular glucose metabolism could be the key biochemical defects involved in this detrimental effect on glucose metabolism.


Assuntos
Glicemia/efeitos dos fármacos , Gorduras na Dieta/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Glicemia/metabolismo , Creatina/metabolismo , Gorduras Insaturadas na Dieta/farmacologia , Ácidos Graxos Insaturados/farmacologia , Fígado/enzimologia , Fígado/metabolismo , Masculino , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Ratos , Ratos Wistar , Ácidos Graxos trans/análise , Ácidos Graxos trans/farmacologia , Triglicerídeos/metabolismo
16.
J Biol Chem ; 280(24): 23165-72, 2005 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-15840572

RESUMO

Glycogen metabolism has been the subject of extensive research, but the mechanisms by which it is regulated are still not fully understood. It is well accepted that the rate-limiting enzymes in glycogenesis and glycogenolysis are glycogen synthase (GS) and glycogen phosphorylase (GPh), respectively. Both enzymes are regulated by reversible phosphorylation and by allosteric effectors. However, evidence in the literature indicates that changes in muscle GS and GPh intracellular distribution may constitute a new regulatory mechanism of glycogen metabolism. Already in the 1960s, it was proposed that glycogen was present in dynamic cellular organelles that were termed glycosomas but no such cellular entities have ever been demonstrated. The aim of this study was to characterize muscle GS and GPh intracellular distribution and to identify possible translocation processes of both enzymes. Using in situ stimulation of rabbit tibialis anterior muscle, we show GS and GPh intracellular redistribution at the beginning of glycogen resynthesis after contraction-induced glycogen depletion. We identify a new "player," a new intracellular compartment involved in skeletal muscle glycogen metabolism. They are spherical structures that were not present in basal muscle, and we present evidence that indicate that they are products of actin cytoskeleton remodeling. Furthermore, for the first time, we show a phosphorylation-dependent intracellular distribution of GS. Here, we present evidence of a new regulatory mechanism of skeletal muscle glycogen metabolism based on glycogen enzyme intracellular compartmentalization.


Assuntos
Glicogênio Sintase/química , Glicogênio Sintase/metabolismo , Glicogênio/química , Actinas/metabolismo , Monofosfato de Adenosina/química , Sítio Alostérico , Sequência de Aminoácidos , Animais , Centrifugação , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Feminino , Glicogênio/metabolismo , Glicogênio Fosforilase/metabolismo , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Músculos/enzimologia , Músculos/metabolismo , Peptídeos/química , Fosforilação , Conformação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Coelhos , Retículo Sarcoplasmático/ultraestrutura , Frações Subcelulares/metabolismo , Tíbia/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...